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Microbiome shifts with onset and 
progression of Sea Star Wasting 
Disease revealed through time 
course sampling
Melanie M. Lloyd & Melissa H. Pespeni   

The recent outbreak of Sea Star Wasting Disease (SSWD) is one of the largest marine epizootics in 
history, but the host-associated microbial community changes specific to disease progression have 
not been characterized. Here, we sampled the microbiomes of ochre sea stars, Pisaster ochraceus, 
through time as animals stayed healthy or became sick and died with SSWD. We found community-
wide differences in the microbiomes of sick and healthy sea stars, changes in microbial community 
composition through disease progression, and a decrease in species richness of the microbiome in late 
stages of SSWD. Known beneficial taxa (Pseudoalteromonas spp.) decreased in abundance at symptom 
onset and through disease progression, while known pathogenic (Tenacibaculum spp.) and putatively 
opportunistic bacteria (Polaribacter spp. and Phaeobacter spp.) increased in abundance in early and late 
disease stages. Functional profiling revealed microbes more abundant in healthy animals performed 
functions that inhibit growth of other microbes, including pathogen detection, biosynthesis of 
secondary metabolites, and degradation of xenobiotics. Changes in microbial composition with disease 
onset and progression suggest that a microbial imbalance of the host could lead to SSWD or be a 
consequence of infection by another pathogen. This work highlights the importance of the microbiome 
in SSWD and also suggests that a healthy microbiome may help confer resistance to SSWD.

Traditionally, symptom progression of infectious diseases has been thought to be the result of one pathogenic 
organism infecting a host. Researchers are now starting to understand the complexities of the microbial ecology 
within hosts through disease symptom progression. Some diseases are now known to be the result of infection by 
a suite of pathogenic microbes (i.e., polymicrobial diseases1) or a general disruption of the host’s microbiome (i.e., 
dysbiosis2). For example, Black Band Disease of corals, a model polymicrobial disease, is the result of infection 
by a community of microbes which all play a role in disease progression3. Polymicrobial diseases of humans are 
also being recognized with increasing frequency and researchers are finding that symptom progression of some 
diseases of known etiology, such as measles4 and pneumonia5, are more complicated than previously considered. 
Some chronic human diseases may be the result of dysbiosis, including inflammatory bowel disease, multiple 
sclerosis, type I diabetes, allergies, and asthma2. Understanding the role of all interacting microbial players that 
lead to disease progression is becoming increasingly important as large scale epidemics increase in frequency in 
humans6 and other species, particularly in marine populations7,8. Here we investigate the role of the microbiome 
in a keystone species, the sea star Pisaster ochraceus9, through disease progression of Sea Star Wasting Disease 
(also called Sea Star Wasting Syndrome or Asteroid Idiopathic Wasting Syndrome), one of the largest marine 
epizootics in recorded history10,11.

Sea Star Wasting Disease refers to a suite of morphological signs of disease affecting more than 20 species in 
the class Asteroidea, including the ochre sea star, Pisaster ochraceus11. Relatively small-scale SSWD events have 
been observed on the west coast of North America since the 1980s12–14. Beginning in 2013, SSWD was observed at 
an unprecedented scale in terms of the geographic range and number of taxa affected as well as extended duration 
of the event11,15–17. The geographic extent of the recent SSWD event (2013-present) is from Prince William Sound, 
Alaska to Baja California, Mexico, completely encompassing the geographic range of many affected species11 (see 
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citizen science database of all recorded SSWD observations: http://data.piscoweb.org/marine1/seastardisease.
html). Morphological signs of SSWD include loss of turgor pressure, deflating and twisting rays, lesions, disin-
tegrating tissue, ray autotomy, and often death of the affected individual11. For P. ochraceus, the iconic keystone 
predator9, population declines have been recorded along nearly the entire species range. SSWD is still ongoing 
throughout the range and population recovery remains uncertain, particularly in southern regions18. SSWD is a 
significant threat to some of the most ecologically important predatory species (i.e. P. ochraceus and Pycnopodia 
helianthoides) in the intertidal and subtidal zones along the west coast of North America. Their removal from 
both of these ecosystems has had a dramatic, direct effects on their prey populations with likely long-lasting indi-
rect effects on inter- and subtidal communities16,19–23.

The etiology of SSWD remains unresolved10. A group of single-stranded DNA viruses, the wasting 
asteroid-associated densoviruses (WAaDs), is associated with SSWD signs in one species, P. helianthoides, but 
not others10. For P. ochraceus, challenges with virus size fractionated material (i.e., <0.2 µm) from SSWD-affected 
individuals did not elicit disease signs10 and the health status of individuals (asymptomatic or symptomatic) 
showed no relationship to the abundance of WAaDs10,11. Additionally, other factors often linked to the onset 
of marine diseases, such as water temperature and population density, have not been linked to SSWD in the 
2013-present outbreak10,18. Sites vary in the relationship between temperature and SSWD: in Oregon, SSWD 
increased with cooler temperatures16, whereas in Washington, SSWD increased with warmer temperatures15. 
Thus, it seems plausible that SSWD is not the result of a single etiology across the entire geographic and taxo-
nomic ranges, but rather the result of a combination of environmental factors, unidentified pathogens, changes in 
the host’s immune system, and/or changes in host-associated bacterial community.

Little work has been done to understand the bacterial taxa involved in SSWD (but see Gudenkaug and 
Hewson24). Given the importance of microbes in health and disease, the main objective of this study was to 
understand the potential role of the sea star microbiome in the onset and progression of SSWD. We used repeated 
time-course sampling of initially asymptomatic adult P. ochraceus maintained in individual aquaria as they nat-
urally progressed through SSWD and compared their microbial community composition to samples from stars 
collected from the same population and maintained in the same conditions that remained healthy. This experi-
mental design controlled for the variation in microbiota between individuals to allow us to test several hypoth-
eses: (1) that there are microbial community differences between sick and healthy sea stars, (2) that there is a 
remodeling and eventual simplification of the bacterial community through disease progression, and (3) that 
time course sampling of healthy and sick animals can reveal beneficial, putatively pathogenic, and opportunistic 
microbes in disease.

Results
Disease progression and microbiome characterization.  For two weeks, thirty-seven field-collected, 
adult P. ochraceus were kept in individual aquaria in a temperature-controlled incubator and monitored for signs 
and progression of SSWD. All experimental animals were asymptomatic at the time of collection and on arrival 
to the lab. The sea stars were collected in an area that had previously experienced SSWD, Monterey, CA, and thus 
contained a suite of microbes representative of a SSWD-exposed population. We chose Monterey, CA because 
the site had been impacted by SSWD, and because the site is centrally located along the species range. We did not 
experimentally infect individuals, rather some sea stars presented symptoms during the two-week experiment 
while others did not. Every three days until death or the end of the experiment, nonlethal tissue samples (3.5 mm 
diameter biopsy punches of epidermal tissue) were taken from each individual. At each sampling time point, 
individuals were inspected for SSWD signs which were classified based on severity according to the P. ochraceus 
SSWD symptom guide as follows: (0) healthy; (1) one lesion on one ray or the central body; (2) lesions on two 
rays, one ray and the central body, or deteriorating rays; (3) lesions on most of the body and/or one or two miss-
ing rays; (4) severe tissue deterioration and/or three or more missing rays; (5) dead25. Eight individuals remained 
healthy to the end of the two-week experiment and 29 became sick and eventually died (Fig. 1A,B). RNA was 
extracted from 176 biopsy tissue samples (83 samples were taken from individuals when they were healthy, 85 
samples were taken from individuals when they were sick, and 8 samples were taken from dead individuals, see 
Supplementary Table 1 for details about each sample). All samples were negative for the SSaDV using the qRT-
PCR assay reported by Hewson et al.11. We used RNA-based amplicon sequencing of the V3-V4 region on the 16S 
rRNA bacterial gene to characterize microbial community composition of sick and healthy P. ochraceus. The 176 
libraries were sequenced on an Illumina MiSeq, producing 300 base pair overlapping paired end reads. After qual-
ity control and filtering, we identified 1,064 Operational Taxonomic Units (OTUs) represented across all samples 
based on homology with the Greengenes Database (mean 41,029+/−8,381 reads per library).

Differences between samples taken from sick and healthy individuals.  Species richness, the esti-
mated number of microbial taxa (measured as the chao1 alpha diversity index), did not differ between samples 
taken from individuals that were healthy at the time of sampling versus samples taken from individuals that were 
sick at the time of sampling (chao1, t-statistic = −1.433, P = 0.151). However, microbial community composition 
did differ between these healthy and sick samples using the UniFrac beta diversity metric, which incorporates 
information on the relative relatedness of community members by incorporating phylogenetic distances between 
observed taxa26 (Fig. 2; permutational multivariate analysis of variance, PERMANOVA, on both unweighted 
and weighted UniFrac distance matrices, unweighted: pseudo-F statistic = 4.784, P = 0.001; weighted: pseudo-F 
statistic = 15.282, P = 0.001). The unweighted UniFrac distance matrix does not take into account differences in 
taxa abundance and only considers presence/absence while the weighted UniFrac distance matrix does take into 
account differences in taxa abundance. 208 OTUs (18.3% of the total OTU table) differed in abundance between 
sick and healthy samples with 95 of the 208 more abundant in samples from healthy versus sick individuals and 
113 more abundant in samples from sick versus healthy individuals (Supplementary Table 2; Padj < 0.1). OTUs 
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more abundant in healthy samples were most commonly in the Pseudoalteromonas genus (16 of 95 OTUs) or were 
not taxonomically assigned to the level of genus (61 of 95 OTUs). Unassigned OTUs were taxa not represented in 
the Greengenes Database but were given unique identifiers to track changes in abundance. OTUs more abundant 
in sick samples were most commonly in the Tenacibaculum (10 of 113 OTUs) and Polaribacter genera (10 of 113 
OTUs) or not assigned to the taxonomic level of genus (57 of 113 OTUs).

Figure 1.  Sea Star Wasting Disease progression through the two-week experiment. (A) Photographs taken 
from one P. ochraceus individual as it progressed through SSWD. Numbers in the top left corner of each picture 
relate to the P. ochraceus SSWD symptom guide from seastarwasting.org with the addition of category 5 for dead 
individuals. (B) Proportion of the 37 individuals of each symptom number at the six sampling time points.
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Figure 2.  Differences in microbial community between sick and healthy individuals. Principal Coordinate 
Analysis plots of microbial communities from all samples throughout the experiment, excluding the 8 samples 
taken from individuals when dead. Samples that were taken from an individual that was sick at the time of 
sampling are colored purple while samples that were taken from an individual that was healthy at the time of 
sampling are colored orange. Principal Coordinate Analysis was based on the weighted UniFrac distance matrix. 
Ellipses are drawn around each group’s centroid (confidence interval, 0.95).
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To provide insight into the cellular processes associated with the distinct microbial communities of sick ver-
sus healthy individuals, we used taxonomy-based functional profiling27. We were able to characterize function 
based on KEGG orthology for 24.2% of the total OTU table (258 of the 1,064 OTUs). We identified 20 path-
ways enriched in samples taken from healthy individuals and 20 pathways enriched in samples taken from sick 
individuals (Supplementary Table 3; Padj < 0.05). Among these differentially enriched functional classes, the 
pathway descriptions most commonly enriched for higher abundance in healthy communities were metabo-
lism of secondary metabolites, including flavonoid and neomycin biosynthesis, and degradation of xenobiotics 
such as atrazine, one of the most commonly used herbicides and a known endocrine disruptor28. The pathway 
descriptions most common among those enriched in sick microbial communities were metabolism of amino 
acids and energy metabolism (Padj < 0.05). Interestingly, communities from both healthy and sick individuals had 
enriched pathways related to immune function. Microbes from healthy individuals were enriched for pathways 
related to amoebiasis and RIG-I-like receptor (RLR) signaling. RLRs detect RNA virus infection and elicit innate 
immune responses29. Two pathways related to Vibrio were enriched among the microbes from sick individuals 
(Supplementary Table 3; Padj < 0.05). These results suggest that microbes abundant in healthy animals perform 
functions that inhibit the growth of other potentially pathogenic microbes.

Initial differences in microbial community.  Comparing samples taken upon arrival, species richness 
(chao1 alpha diversity) and taxonomic composition (UniFrac beta diversity) did not differ between individ-
uals that ended the experiment healthy vs. those that ended the experiment sick (chao1, t-statistic = −1.112, 
P = 0.26; unweighted PERMANOVA, pseudo-F statistic = 1.467, P = 0.114; weighted PERMANOVA, pseudo-F 
statistic = 1.817, P = 0.123). However, despite similarities in overall diversity, 75 OTUs differed in abundance 
between the initial samples from the 29 individuals that became sick versus the 8 individuals that remained 
healthy (Supplementary Table 4; Padj < 0.1), though this number of differentially abundant OTUs was within 
the null distribution based on 1000 random permutations. Interestingly, 91% of these taxa (68 OTUs) were in 
relatively higher abundance in healthy individuals while 9% (7 OTUs) were in higher abundance in sick individ-
uals. Of the 68 OTUs more abundant in healthy animals, 51 were uncharacterized in the Greengenes Database, 
but match marine taxa previously found in healthy Pacific Oysters, Crassostrea gigas, based on BLAST align-
ment30. The 7 OTUs that were higher in abundance in individuals that eventually became sick belonged to the 
Flammeovirgaceae, Colwelliaceae, or Francisellaceae families, which contain known pathogens31.

Microbial community changes occurring with symptom onset.  To identify changes in microbial 
community that happened as an individual first developed signs of SSWD, we tested for OTUs whose abun-
dance showed an interaction between time and health status in a subset of samples: those taken immediately 
before and after disease signs were first observed in sick animals paired with corresponding samples in time from 
healthy animals. This test identified 145 OTUs with changes in abundance (14% of the total OTU table), all of 
which except one were more abundant in healthy relative to sick animals through time (Supplementary Table 5; 
Padj < 0.1). The most common taxonomic classification of these OTUs was the genus Pseudoalteromonas (20 of 
145 OTUs).

Differences through SSWD progression.  To identify changes in microbial community that were specific 
to early and late disease stages, we tested for differences in microbial communities between samples character-
ized by different disease stage numbers and found that abundance of bacterial orders differed depending on 
symptom number (Fig. 3A). Through disease progression, there was a decrease in previously uncharacterized 
bacterial taxa (Fig. 3A, chi-square = 30.78, P < 0.001), which could be due to greater research efforts directed 
towards the characterization of disease-causing rather than healthy microbiota. To increase statistical power to 
identify specific taxa associated with broader disease stages, symptom numbers 1 and 2 were collapsed to ‘early 
stage disease’ and numbers 3, 4, and 5 were collapsed into ‘late stage disease’. 83 collected samples were classified 
as healthy, 69 were classified as early stage disease, and 24 were classified as late stage disease. Beta diversity, i.e., 
community composition, differed between microbial communities of samples taken from individuals among 
all disease stages (unweighted PERMANOVA pseudo-F statistic = 2.925, P = 0.001; weighted pseudo-F statis-
tic = 8.317, P = 0.001). Considering species richness, healthy vs. early stage disease individuals did not differ 
(chao1, t-statistic = 1.570, P = 0.39), nor did healthy vs. late stage disease individuals (chao1, t-statistic = 2.026, 
P = 0.156). However, species richness did differ between early vs. late stage disease individuals where late stage 
disease individuals had fewer taxa than early stage disease individuals (chao1, t-statistic = 4.268, P = 0.003, 
Fig. 3B), suggesting a reduction in the microbial diversity due to an increase in abundance of fewer, likely oppor-
tunistic pathogens at late stages of disease.

Healthy and early-stage samples differed in the abundance of 119 OTUs; healthy and late-stage samples dif-
fered in the abundance of 278 OTUs; and early- and late-stage samples differed in the abundance of 177 OTUs 
(Supplementary Tables 6–8, respectively; Padj < 0.1). Of the 119 differentially abundant OTUs between healthy and 
early stage samples, 47 were in higher abundance in healthy samples, 15 of which were Pseudoalteromonas spp. 
(Fig. 4A). Among the 72 OTUs higher in early stage sick samples, the most common genera were Tenacibaculum 
and Polaribacter (Fig. 4B). Among the 119 OTUs changing in abundance from healthy to early stage samples, 10 
OTU changes were specific to the shift between healthy and early-stage symptoms (Fig. 5). Of these 10 OTUs dif-
ferentially abundant between healthy and early-stage sick individuals, 8 of them were relatively higher in healthy 
samples than sick samples and 4 of these were in the Pseudoalteromonas genus. Of the 177 differentially abundant 
OTUs between early stage and late stage sick samples, 138 were in higher abundance in late stage samples (most 
commonly Phaeobacter spp. and Polaribacter spp.) and 39 were in higher abundance in early stage samples. Lastly, 
20 of the 177 OTUs changing in abundance from early to late stage disease samples were specific to that shift. 12 of 
these 20 were relatively higher in late stage samples compared to early-stage samples (Fig. 5). The most common 



www.nature.com/scientificreports/

5Scientific REPOrTS |         (2018) 8:16476  | DOI:10.1038/s41598-018-34697-w

genus was Moritella, a small genus of marine bacteria, one species of which causes winter ulcer, a disease that 
primarily affects salmonid fish during cold periods32. Many of the taxa (106 OTUs) that differed in abundance 
between healthy and early stage samples also differed in abundance between healthy and late stage samples (Figs 4 
and 5, Supplementary Tables 6 and 7).

Discussion
The goal of this study was to investigate the potential role of the microbiome in a poorly understood and highly 
destructive disease. To our knowledge, this is the first characterization of the microbiome during SSW disease 
progression. Our results suggest that the microbiome plays a role in SSWD in P. ochraceus, which is perhaps not 
surprising given that the microbiome is a key player in many human1,2 and nonhuman diseases, including marine 
diseases33, and given the complex biogeography of SSWD spread, the large number of species affected, and the 

Figure 3.  Microbial community differences through SSWD symptom progression. (A) Proportions of OTUs 
classified to the Order level in microbial communities from sea stars sampled through disease stages. Disease 
stage number relates to the P. ochraceus SSWD symptom guide from seastarwasting.org with the addition of a 
category 5 for dead individuals. (B) Rarefaction plot of mean chao1 alpha diversity estimates as a function of 
sequencing depth for samples grouped by disease stage. Shaded areas represent the standard error of the mean 
(SEM) for the chao1 estimates.

Figure 4.  Changes in abundance of OTUs through SSWD progression. (A) Log normalized abundance of 6 
OTUs whose abundance decreased from healthy samples through symptom progression. Abundance of these 
OTUs differed between healthy and early stage sick samples (adjusted P values presented from this test) and 
between healthy and late stage sick samples. (B) Log normalized abundance of 6 OTUs whose abundance 
increased from healthy samples through symptom progression. Abundance of these OTUs differed between 
healthy and early stage sick samples (adjusted P value presented from this test) and between healthy and late 
stage sick samples. The centerline of the boxplots represents the median of the data, the box represents the 
interquartile range, and the whiskers represent the minimum and maximum values.
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lack of consistent correspondence to the abiotic factors of temperature and precipitation11. Results from our time 
course sampling of the microbiome of healthy and sick sea stars support our hypotheses that there are distinct 
microbial communities specific to sick and healthy individuals and that there is a remodeling of the microbial 
community through disease progression, which did not occur in healthy individuals. In addition, the loss of 
known beneficial microbes and the increase of a suite of known pathogens support the hypothesis that SSWD 
may be the result of an imbalance in the microbial community, or a dysbiosis disease. This imbalance could result 
in disease symptoms and or allow for infection by one or multiple pathogens. While cause versus effect is difficult 
to distinguish without experimental manipulation of microbes, the temporal resolution of this experiment has 
allowed for the identification of microbial communities specific to healthy animals, early stage disease animals, 
and late stage disease animals.

An alternative explanation is that these microbial community differences are not causing SSWD symptoms, 
but are symptoms themselves of another, unidentified pathogen. Recent work has shown that infection rates and 
mortality driven by single, known pathogens depend on the microbial community composition as shaped by con-
ditions such as temperature and precipitation34,35, coinfection with other pathogens36,37, or the use of antibiotics, 
probiotics, fungicides, or pesticides38,39. These interactions between pathogen, microbiome, and conditions have 
been shown in a range of systems, chytridiomycosis in amphibians34,38, bovine tuberculosis in African buffalo36, 
and Enterobacterial blooms in gut inflammation diseases in humans and mouse models37,39. In sea urchins, which 
are echinoderms like sea stars, temperature and pH conditions have been shown to impact microbial commu-
nity composition and affect immune function40–42. Other potentially important players in disease are bacterio-
phages (phages), viruses that infect bacteria, because they can affect microbial community composition and make 
way for opportunistic pathogens in a host35,43,44. They have also been shown to lyse their hosts in temperature-, 
nutrient-, and density-dependent conditions35. This is an area of active research43, particularly in the context of 
coral reef health44. Thus, these scenarios, a dysbiosis disease or a single pathogen, may not be mutually exclusive 
and highlight the interplay between the environment, microbiome, host, and pathogen(s) in disease emergence.

We found a specific signature of microbial community shifts correlating with disease progression in sick stars 
distinct from the microbial community of healthy stars. This signature was characterized by a decrease in abun-
dance of Pseudoalteromonas spp. in sick individuals at the time of first symptom onset (Fig. 3B; Supplementary 
Table 5), followed by an increase in Tenacibaculum spp. and Polaribacter spp. bacteria in early stages of dis-
ease (Fig. 3C; Supplementary Table 6), followed by an increase in abundance of putatively opportunistic bac-
teria (Phaeobacter spp. and Polaribacter spp.) late in disease progression (Supplementary Table 7). Members of 
the Pseudoalteromonas genus live within marine eukaryotes and create a competitive advantage against other 
microbes by producing anti-bacterial, bacteriolytic, agarolytic, and algicidal molecules45. Pseudoalteromonas spp. 
have been considered for use as biological control agents to control pathogens in aquaculture productions of fish, 
abalone, and oysters46,47 and even as a bioactive compound for use in human pharmaceuticals48. It is possible 
that these bacteria are occupying niche space in healthy animals and have a competitive edge against potentially 
pathogenic microbes, such as Tenacibaculum spp. bacteria, a genus containing marine pathogens49. In fact, some 
members of the Pseudoalteromonas genus are key members of some coral species’ holobionts and have been 
shown to be able to regulate the coral bacterial community through antimicrobial activity and kill bacterial taxa 
suspected of causing coral diseases50–52. In a time-course, experimental infection study of white band disease of 
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Figure 5.  Venn diagram of differentially abundant OTUs between samples of different disease stages. ‘Early-
stage disease’ includes symptom numbers 1 and 2 and ‘late-stage disease’ includes symptom numbers 3, 4, and 5.



www.nature.com/scientificreports/

7Scientific REPOrTS |         (2018) 8:16476  | DOI:10.1038/s41598-018-34697-w

Acropora cervicornis corals, OTUs from the family Alteromonadaceae (which contains the Pseudoalteromonas 
genus) were in abundances that suggested a role as a defensive symbiont of the host coral53.

The decrease in abundance of Pseudoalteromonas spp. bacteria was followed by the proliferation of 
Tenacibaculum spp. and Polaribacter spp., which increased in abundance after first signs of disease but early 
in progression. These early stage disease changes were then followed by proliferation of putatively opportun-
istic pathogenic Phaeobacter spp. and Polaribacter spp. Some Phaeobacter species have complex dynamics and 
switch between a mutualist life strategy and opportunistic pathogen strategy54. These results suggest a model for 
SSWD progression that starts with a decrease in abundance of putatively beneficial bacteria (Pseudoalteromonas 
spp.), followed by an increase in abundance of putatively pathogenic bacteria after symptoms first appear 
(Tenacibaculum spp. and Polaribacter spp.), and finally, an increase in abundance of opportunistic pathogens as 
the disease progresses (Phaeobacter spp. and Polaribacter spp.; see summary model Supplementary Fig. 1).

We found minimal overlap in the bacterial taxa identified in this study and the previous study of bacterial 
community members in SSWD-affected Pycnopodia helianthoides: of the 20 most abundant bacterial genera iden-
tified previously, only 2 (Pseudomonas and Vibrio) were identified in this study but at much lower frequency24. 
This may be due to the fact that these studies were done in different host species that belong to different families 
of sea stars. Alternatively, it may be that this most recent SSWD outbreak was not the result of a single disease 
outbreak or stress event but multiple concordant events10. In additions, all of our samples were negative for the 
Sea Star-associated densovirus (SSaDV) using the diagnostic qRT-PCR assay11 despite positive amplification of 
biological and technical controls. These results add to the growing evidence that SSWD in P. ochraceus is not 
associated with the initially identified SSaDV10.

Traditionally, the cause of an infectious disease has been identified by fulfilling Koch’s Postulates: (1) the patho-
genic organism is found in diseased individuals and not healthy individuals, (2) the pathogenic organism is isolated 
in pure culture, (3) the cultured organism causes disease when introduced into a healthy individual, and (4) the 
organism is again isolated from the inoculated, diseased individual and is identical to the originally isolated path-
ogen55–57. However, this approach might not be appropriate or realistic for polymicrobial diseases55. Furthermore, 
linking marine disease outbreaks to a specific causative pathogen is notoriously difficult58. Researchers have sug-
gested modifying Koch’s Postulates in order to accommodate our new and evolving understanding of disease59. Sato 
et al.3 recommended four steps to understanding pathogenesis of polymicrobial diseases: “…the following factors 
must be identified: (i) microbial communities that are uniquely and/or commonly present in disease lesions, (ii) 
key microbial members and their individual functions that contribute to a microenvironment that enables path-
ogenic communities to develop, (iii) metabolic interactions between the key microbial players that are collectively 
responsible for pathogenesis, and (iv) ecological factors that alter interactions between the host and its pathogens 
and predispose the host to formation of the polymicrobial communities”. The results of the present study contribute 
to fulfilling these steps for SSWD by identifying the members of the microbial communities specific to P. ochraceus 
with and without SSWD. We identified putatively beneficial, pathogenic, and opportunistic bacterial members of 
the P. ochraceus microbial community as they relate to SSWD. Overall, our results suggest that SSWD onset and pro-
gression may not be caused by one pathogenic organism but may be the result of a complicated interaction between 
multiple microbial taxa. To further explore the roles of host genotype and environmental and ecological conditions 
in shaping host-associated microbial communities, future work should compare microbial communities of healthy 
and sick stars from adjacent impacted and not impacted sites from multiple species.

Some studies of marine organisms show a shift in microbiome composition as a result of culture in aquaria, 
on the time scale of days to months to years60–62, while other studies show that the microbiome is not affected by 
transfer to and culture in aquaria63–65. In this study, it is possible that handling and maintenance in aquaria had an 
effect on the microbiomes of these experimental stars. However, such an effect would not change the conclusions 
of this study due to our experimental design of housing animals in individual aquaria in a common conditions. 
Eight of the 37 animals remained healthy for the duration of the experiment. If the handling and culture in artifi-
cial seawater induced wasting, all individuals would have become sick because all individuals were handled in the 
same manner. In addition, upon arrival to the lab, there were only small differences in the individuals that became 
sick vs. those that stayed healthy; samples from these groups were not different in species richness or UniFrac beta 
diversity and the number of differentially abundant OTUs between these samples were relatively few compared 
to other contrasts (Supplementary Table 9). Thus, our results suggest that handling alone was unlikely to differ-
entially affect the 37 individuals, causing only some to get sick and die, and suggest that the sea stars came in with 
the microbial communities and pathogens that ultimately shaped their fate.

In the face of rapidly changing global environmental conditions, epidemics are increasing in frequency and 
magnitude, and it is important to understand the mechanisms of disease resistance6,66. Our results add to the 
growing body of evidence that supports the hypothesis that the host-associated microbiome could provide a 
protective benefit to the host or yield hosts more susceptible to infection67–69. Our data provide evidence for a 
community of microbes associated with resistance to SSWD and support the hypothesis that SSWD may be due 
to a dysbiosis of a healthy microbiome followed by infection by one or multiple pathogenic bacteria. Future stud-
ies should test the impacts of environmental pollutants and/or changes in environmental conditions on microbial 
communities sea star immunity, and signs of wasting. Considering the effects of these keystone predators on 
the intertidal community, SSWD may be an example of microbial ecology within hosts impacting large-scale 
community-wide disturbances.

Methods
Animal collection and experimental design.  Thirty eight adult (mean length from tip of ray to mid-
dle of the oral disc, R = 9.7 cm ± 2.2 standard deviation), asymptomatic P. ochraceus were collected by hand by 
SCUBA from around the wharf at Monterey Harbor, Monterey, California (36°36′21.44″N 121°53′23.69″W) on 
May 4, 2016 or June 8, 2016. P. ochraceus had experienced a high incidence of SSWD at Monterey in late 2013 and 
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2014, but at the time of collection in mid 2016, the majority of individuals were asymptomatic (see http://data.pis-
coweb.org/marine1/seastardisease.html for a detailed history of SSWD observations in this region). The average 
temperature at the time of collection was 12 °C. The stars were shipped overnight in individual bags with approx-
imately 300 ml seawater per bag to the University of Vermont; the bags of stars were shipped in a Styrofoam box 
with a layer of freezer packs on the top and bottom of the box with bunched newspaper between the freezer packs 
and the stars to buffer against extreme cold. The total transit time was approximately 17 hours for both shipments. 
Immediately upon arrival, nonlethal biopsy punches were taken from the body wall of each individual (3.5 mm 
diameter biopsy punch, Robbins Instruments, Chatham, NJ) and individuals were photographed and checked for 
signs of SSWD. Only one individual showed signs of SSWD upon arrival, individual 30; it was not included in 
the experiment (Supplementary Table 1). The biopsy sampling method was pilot tested previously and shown not 
to kill or harm individuals (data not shown). Individuals were transferred to individual, numbered, pre-leached 
plastic containers (31.5 cm × 18.5 cm × 11.5 cm) filled with 1 gallon of artificial seawater (33 parts per thousand 
Instant Ocean salt (Blacksburg, VA) mixed with RO water), with individual bubblers, and kept in one of two incu-
bators (SANYO MLR-350, Osaka, Japan) at 12 °C. Every three days, nonlethal biopsy punches were taken from 
the body wall of each individual. Only epidermal body wall tissue was sampled, even when sampling wasting 
individuals. For individuals displaying SSW, wasting epidermal tissue, rather than healthy epidermal tissue, was 
sampled. All biopsy tissue samples were flash frozen in liquid nitrogen in 2 ml tubes and stored at −80 °C. At each 
sampling time point, photographs were taken and signs of disease were recorded according to the P. ochraceus 
SSWD symptom guide25. Every Monday, Wednesday, and Friday containers were manually cleaned and refilled 
with fresh artificial seawater, then bubbled with the same bubbler. Animals were not fed during the experiment 
in order to not introduce additional microbes and microbial variation with the food source. The experiment was 
terminated after fifteen days. Dead individuals were removed from the experiment at the first time they were 
observed to be dead. If this observation occurred at a sampling time point, a sample was taken and included in 
the analysis with a phenotype of ‘Dead’ (8 total samples were classified as such).

RNA extraction and cDNA reverse transcription.  RNA was extracted from each biopsy punch using 
a modified TRIzol protocol (TRIzol reagent ThermoFisher Scientific, Waltham, MA). Tissue was lysed in 250 ul 
TRIzol with a plastic pestle then homogenized with 750 ul more TRIzol on a Vortex Genie2 (Scientific Industries, 
Bohemia, NY) for 20 minutes. 200 ul chloroform (ThermoFisher Scientific, Waltham, MA) was added to the 
mixture which was inverted 15 times, incubated for 3 minutes, and centrifuged for 15 minutes at 12,000 × g at 
4 °C. The aqueous phase containing RNA was transferred to a new tube and this step was repeated a second 
time. The RNA was precipitated from the aqueous phase by the addition of 500 ul isopropanol (ThermoFisher 
Scientific, Waltham, MA) and 1 ul 5 mg/ml glycogen (Invitrogen, Carlsbad, CA), incubation for 10 minutes at 
room temperature, and centrifugation for 5 minutes at 7500 × g at 4 °C. The RNA pellet was dried for 10 minutes 
at room temperature and resuspended in 50 ul nuclease-free water. The quality and quantity of the RNA extrac-
tions was measured using a NanoDrop 2000 Spectrophotometer (ThermoFisher Scientific, Waltham, MA) and 
Qubit 3.0 Fluorometer (Life Technologies, Carlsbad, CA). The RNA was checked for contaminating DNA by 
negative amplification PCR (see below for 16S PCR amplification parameters). cDNA was reverse transcribed 
with SuperScript IV (Invitrogen, Carlsbad, CA), using random hexamer primers.

SSaDV diagnostic qPCR.  cDNA from all samples were tested for the presence of SSaDV according to the  
protocol and primers from Hewson et al.11. Duplex qRT-PCR reactions tested for the presence of both the 
nonstructural protein 1 (NS1; forward primer, 5′-ttaaggatcgggttcgtgtc-3′; reverse primer, 5′-tgcaagcggatta 
ggtttct-3′; probe, 5′-tcaattggatgagtgcaccatttttga-3′; oligonucleotide standard, 5′-tttaaggatcgggttcgtgtcttcaattgg 
atgagtgcaccatttttgaagaattatgataagaaacctaatccgcttgcag-3′) and the viral gene product 4 (VP4; forward primer,  
5′-ttgcattaattcctgctggt-3′; reverse primer, 5′-tgtaccaccagtgggatagc-3′; probe, 5′-tgatgtcatgcaaactgttgcc 
aca-3′; oligonucleotide standard, 5-tttgcattaattcctgctggtagttacataaagtctgtatctattgatgtcatgcaaactgttgccaca 
actggctatcccactggtggtacaa-3′). 25 ul reactions were run in duplicate for each sample and contained 80 nM of each 
primer and probe, 2 ul cDNA, and 1x iTaq Universal Probe Supermix (BioRad, Hercules, CA) (Hewson, I., per-
sonal communication). The conditions were as follows: 95 °C for 5 minutes followed by 60 cycles of 95 °C for 
30 seconds and 55 °C for 30 seconds. qRT-PCR reactions were amplified in a BioRad CFX Connect Real-Time 
System. Biological and technical positive controls were included. The technical control was a synthetically pro-
duced oligonucleotide which contained both oligonucleotide standard sequences reported in Hewson et al.11. The 
biological control was a DNA extraction of a SSaDV-positive sea star provided by the Hewson lab.

16S PCR amplification and sequencing.  The V3 and V4 region of the 16S bacterial gene were ampli-
fied with the following primers (Illumina adapter overhang nucleotide sequences are underlined): Forward 
5′TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG and Reverse 5′ 
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC70. 25 ul PCR reac-
tions (1X MiFi Mix (Bioline, Toronto, Canada), 200 nM each primer, and 2 ul cDNA) were run with the following 
conditions: 95 °C for 3 minutes followed by 25 cycles of 95 °C for 30 seconds, 55 °C for 30 seconds, and 72 °C for 
30 seconds, with a final extension at 72 °C for 5 minutes. PCR products were cleaned with AMPure XP beads 
(Beckman Coulter, Brea, CA), MiSeq indexing adapters were added to PCR products, and indexed PCR products 
were cleaned with AMPure XP beads according to the Illumina 16S metagenomic sequencing library prepara-
tion protocol71. Cleaned, indexed PCR products were run on a 2% agarose gel to check for appropriately sized 
bands. 16S rRNA gene amplicon libraries were sequenced at RAPID Genomics (Gainesville, Florida, USA) on an 
Illumina MiSeq platform using 2 × 300 base pair overlapping paired-end reads.

http://data.piscoweb.org/marine1/seastardisease.html
http://data.piscoweb.org/marine1/seastardisease.html
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Sequence data processing and OTU clustering.  Sequences were demultiplexed and barcode sequences 
were removed at RAPID Genomics. Paired end reads were matched and quality filtered using QIIME’s ‘multiple_
join_paired_ends.py’ and ‘multiple_split_libraries_fastq.py’, respectively, with default parameters72. Sequences 
were clustered into Operational Taxonomic Units (OTUs) with QIIME’s Open Reference OTU algorithm (a com-
bination of Closed Reference OTU clustering based on 97% similarity to the Greengenes Database followed by 
de novo OTU clustering) using QIIME’s ‘pick_open_reference_otus.py’; default parameters were used except for 
‘enable_rev_strand_match,’ which was set to True72–75. The clustering step also included taxonomic assignment 
of de novo OTUs using the RDP Classifier to the Greengenes Database version 13_876,77 which matches a cen-
troid sequence of each OTU to the lowest common ancestor (LCA) in the Greengenes Database. The de novo 
assignment commonly results in partial taxonomic classification of de novo clustered OTUs. The last step of OTU 
assignment is assembly of a phylogenetic tree of the taxa in the OTU table with FastTree 2.1.378. The phyloge-
netic classification of the family Pseudoalteromonadaceae is incorrectly placed in the order Vibrionales in the 
Greengenes Database79. We corrected this assignment to the order Alteromonadales in our phylogenic tree. OTUs 
present in fewer than 25% of samples were removed using QIIME’s ‘filter_otus_from_otu_table.py’. Chimeric 
OTUs were filtered using VSEARCH80. The above processes resulted in an OTU table containing 1,064 OTUs. 
To gain additional taxonomic information on some OTUs of interest, a representative sequence of that OTU was 
used in a BLAST alignment search with default parameters81.

Microbial community analysis.  We produced a distance matrix containing a dissimilarity value for each 
pairwise comparison between samples based on both the weighted and unweighted Unifrac metrics from a rare-
fied OTU table (rarefied to 20,000 reads/sample) using QIIME’s ‘core_diversity_analyses.py’26. We used QIIME’s 
‘compare_alpha_diversity.py’ and ‘compare_categories.py’ to test for differences between choa1 alpha diversity and 
UniFrac beta diversity, respectively. For alpha diversity, we compared results from all three metrics: chao1, observed 
OTUs, and Faith’s Phylogenetic Diversity, which produced corroborating results. For beta diversity, we compared 
results from the following methods, which produced corroborating results: adonis, ANOSIM, MRPP, db-RDA, and 
PERMANOVA each with 999 permutations. To test for community wide differences in microbial communities 
between different groups of samples, we used the above methods to test for differences in choa1 alpha diversity 
and UniFrac beta diversity between samples taken from sick vs. healthy individuals, samples taken from healthy 
individuals vs. early stage disease individuals vs. late stage disease individuals, and samples taken upon arrival com-
paring individuals which ended the experiment healthy vs. those that ended the experiment sick. Because diversity 
measures increase with sample size82, in comparisons that involved unbalanced sample numbers, we randomly sub-
sampled the group with more samples down to the number of samples in the group with fewer samples. Principal 
Coordinate Analysis plots based on the Bray-Curtis distance were produced in the R package, Phyloseq83.

Differential expression of OTUs.  DESeq2 is commonly used to test for differential expression between 
genes in RNASeq datasets84. This same program can be used to test for differential abundance of OTUs using the 
Phyloseq package83,85. Input to DESeq2 is a matrix of raw counts of each OTU per sample. The counts datum is 
normalized to account for differences in sequencing depth between libraries. DESeq2 uses a generalized linear 
model with a negative binomial distribution to test for differential abundance between groups by calculating the 
Wald’s statistic and P value for every OTU in the table. A Benjamin Hochberg multiple test correction accounts 
for the multiple testing of the many OTUs in the counts table84. We tested for differential abundance of OTUs 
between groups using a number of models as follows. To test for the effect of the health status of the individual at 
the time of sampling while controlling for the repeated measures of each individual, we used the model ~individ-
ual + phenotype and limited the OTU table to either sick or healthy samples (168 samples from N = 37 individ-
uals). To test for differences between individuals that remained healthy vs. individuals that became sick at Day 0, 
we limited the OTU table to only samples on that day (37 samples from N = 37 individuals) and used the model 
~Final_phenotype. To identify differences in OTU abundance that happened as an individual first developed 
signs of SSWD, we limited the OTU table to samples immediately before and after the first observation of disease 
in sick individuals as well as corresponding sample pairs from healthy individuals (46 paired before/after samples 
from N = 23 individuals). Samples from individuals that became sick between the first two sampling points (Day 
0 and Day 3) were excluded from this group. We then tested the model ~Final_phenotype + Time + Final_phe-
notype:Time vs. Final_phenotype + Time. In testing for differential abundance of OTUs between samples taken 
from individuals of different disease stages, we needed to increase statistical power by collapsing the Pacific 
Rocky Intertidal Monitoring Program’s disease classification as follows: stage numbers 1 and 2 were collapsed 
to ‘early disease stage’ and numbers 3, 4, and 5 were collapsed into ‘late disease stage’. We then tested the differ-
ence between healthy samples versus early disease stage samples (152 samples from N = 37 individuals), healthy 
samples versus late disease stage samples (107 samples taken from N = 33 individuals), and early disease stage 
samples versus late disease stage samples (93 samples taken from N = 29 individuals) while controlling for the 
repeated measures of each individual, with the following model: ~individual + disease_stage_number. For all of 
these models, the total number of differentially abundant OTUs according to Padj < 0.1 were compared to the null 
distribution of significant OTUs resulting from 1000 permutations where the health status associated with the 
sample was randomly reassigned. The results of the permutations are presented in Supplementary Table 9. The 
number of samples included in all statistical tests are presented in Supplementary Table 10. Phyloseq and DESeq2 
analyses were performed in R version 3.2.286.

Functional profiling.  Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 
(PICRUSt)27 was used to predict the functional content of the microbial communities. PICRUSt uses extended 
ancestral-state reconstruction of unknown microbes to microbes with full genome sequences to predict which 
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gene families are present27. Of the 1,064 OTUs in our OTU table, 258 were picked with Closed Reference OTU 
picking and could be used in the PICRUSt analysis (24.2%). Count data for this subset of OTUs was normal-
ized based on 16 s copy number using PICRUSt’s ‘normalize_by_copy_number.py’, functions were predicted 
using ‘predict_metagenomes.py’, and KEGG Orthology groups (KOs) were collapsed to level 3 with ‘catego-
rize_by_function.py’. To quantify the availability of nearby genome representatives for each microbiome sample 
(and thus quantify the strength of the predicted functions), PICRUSt calculated a Nearest Sequenced Taxon 
Index (NSTI). We found the NSTI of our samples to be within the acceptable range for metagenome predictions 
(mean = 0.08+/−0.04). Differential expression analysis was performed on this biom table using Phyloseq and 
DESeq2 as explained above.

Data Availability
The data generated in this study is publicly available through the NCBI Short Read Archive (BioProject ID PRJ-
NA407315). All of the material needed to replicate the analyses in this article has been made publicly available at 
https://github.com/mlloyd23/SSWD_16S_analysis.
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